Приближённое определение сопротивления по прототипу основано на использовании полученной в результате модельных испытаний зависимости коэффициента остаточного сопротивления
, для судна с формой обводов, аналогичной принятой для рассчитываемого объекта, и по возможности с небольшими различиями в основных геометрических характеристиках корпуса. При этом влияние на остаточное сопротивление несоответствия геометрических параметров, как правило, соотношений главных размерений
,
,
, коэффициентов полноты
,
, а иногда и абсциссы центра величины
учитывается введением системы корректирующих поправок в исходные значения
для прототипа. Применение указанных поправок основывается на допущении о независимости влияния на остаточное сопротивление каждого геометрического параметра из числа различающихся у проектируемого судна и прототипа, при этом остальные параметры полагаются постоянными.
Кроме использования для расчёта коэффициента
по прототипу непосредственно материалов систематических серий, существуют комплекты графиков, построенных специально для определения «коэффициентов влияния». Наиболее известные из них диаграммы, построенные И.В. Гирсом, учитывающие влияние относительной длины
y, коэффициента продольной полноты
и отношения ширины к осадке
. Именно этими диаграммами мы и будем пользоваться в наших расчётах.
Рассчитаем полное сопротивление движению судна по данным прототипа для полной осадки (таб. 5.1) и построим графическую зависимость
.
судно гребной винт лопасть
Таблица 5.1
Расчёт буксировочных сопротивления и мощности путём пересчёта коэффициента остаточного сопротивления по прототипу
|
№ |
Обозначение расчётных величин |
Численные значения | ||||
|
1 |
|
5,000 |
10,000 |
15,000 |
20,000 |
25,000 |
|
2 |
|
2,570 |
5,140 |
7,710 |
10,280 |
12,850 |
|
3 |
|
6,600 |
26,420 |
59,440 |
105,680 |
165,120 |
|
4 |
|
0,060 |
0,110 |
0,170 |
0,220 |
0,280 |
|
5 |
|
0,650 |
0,700 |
0,720 |
1,000 |
1,050 |
|
6 |
|
1,080 |
1,075 |
1,074 |
1,067 |
1,059 |
|
7 |
|
0,920 |
0,950 |
0,940 |
0,920 |
1,070 |
|
8 |
|
0,970 |
0,970 |
0,970 |
0,970 |
0,970 |
|
9 |
|
0,630 |
0,690 |
0,710 |
0,950 |
1,150 |
|
10 |
|
3,097 |
6,194 |
9,290 |
12,387 |
15,484 |
|
11 |
|
1,827 |
1,673 |
1,585 |
1,532 |
1,500 |
|
12 |
|
0,200 |
0,200 |
0,200 |
0,200 |
0,200 |
|
13 |
|
0,100 |
0,100 |
0,100 |
0,100 |
0,100 |
|
14 |
|
2,757 |
2,663 |
2,595 |
2,782 |
2,950 |
|
15 |
|
51,495 |
199,109 |
436,518 |
832,025 |
1378,504 |
|
16 |
|
132,343 |
1023,419 |
3365,557 |
8553,217 |
17713,781 |
|
| ||||||
Информация по теме:
Анализ ликвидности ООО
"Русбизнесавто"
Таблица 3.6 Анализ соотношения активов по степени ликвидности и обязательств по сроку погашения ООО "Русбизнесавто" за 2008 г. Активы по степени ликвидности На конец отчетного периода, тыс. руб. Прирост с нач. года,% Норм. соотношение Пассивы по сроку погашения На конец отчетного периода, ...
Определение штата участка контрольного пункта автосцепки
Численность явочных производственных рабочих участка рассчитывается по норме трудозатрат на ремонт одного узла вагона , (2.1) где – годовая программа ремонта узла, ед., ед.; – трудоемкость ремонта одного узла по каждой профессии участка. , (2.2) где – общая трудоемкость ремонта одного физического в ...
Основные сведения об аппаратуре рельсовых цепей
Трансформаторы (рис.1.5) используются в устройствах рельсовых цепей на метрополитене в качестве питающих элементов (ПОБС-2А, ПОБС-3А, ПОБС-5А, СОБС-3А) и в качестве согласующих элементов (ПОБС-2А, РТЭ-1А), а также для регулировки сигнального тока (ПТЦ, СОБС-3Б, УТ3). Рис.1.5 Схемы обмоток трансформ ...