Приближённое определение сопротивления по прототипу основано на использовании полученной в результате модельных испытаний зависимости коэффициента остаточного сопротивления
, для судна с формой обводов, аналогичной принятой для рассчитываемого объекта, и по возможности с небольшими различиями в основных геометрических характеристиках корпуса. При этом влияние на остаточное сопротивление несоответствия геометрических параметров, как правило, соотношений главных размерений
,
,
, коэффициентов полноты
,
, а иногда и абсциссы центра величины
учитывается введением системы корректирующих поправок в исходные значения
для прототипа. Применение указанных поправок основывается на допущении о независимости влияния на остаточное сопротивление каждого геометрического параметра из числа различающихся у проектируемого судна и прототипа, при этом остальные параметры полагаются постоянными.
Кроме использования для расчёта коэффициента
по прототипу непосредственно материалов систематических серий, существуют комплекты графиков, построенных специально для определения «коэффициентов влияния». Наиболее известные из них диаграммы, построенные И.В. Гирсом, учитывающие влияние относительной длины
y, коэффициента продольной полноты
и отношения ширины к осадке
. Именно этими диаграммами мы и будем пользоваться в наших расчётах.
Рассчитаем полное сопротивление движению судна по данным прототипа для полной осадки (таб. 5.1) и построим графическую зависимость
.
судно гребной винт лопасть
Таблица 5.1
Расчёт буксировочных сопротивления и мощности путём пересчёта коэффициента остаточного сопротивления по прототипу
|
№ |
Обозначение расчётных величин |
Численные значения | ||||
|
1 |
|
5,000 |
10,000 |
15,000 |
20,000 |
25,000 |
|
2 |
|
2,570 |
5,140 |
7,710 |
10,280 |
12,850 |
|
3 |
|
6,600 |
26,420 |
59,440 |
105,680 |
165,120 |
|
4 |
|
0,060 |
0,110 |
0,170 |
0,220 |
0,280 |
|
5 |
|
0,650 |
0,700 |
0,720 |
1,000 |
1,050 |
|
6 |
|
1,080 |
1,075 |
1,074 |
1,067 |
1,059 |
|
7 |
|
0,920 |
0,950 |
0,940 |
0,920 |
1,070 |
|
8 |
|
0,970 |
0,970 |
0,970 |
0,970 |
0,970 |
|
9 |
|
0,630 |
0,690 |
0,710 |
0,950 |
1,150 |
|
10 |
|
3,097 |
6,194 |
9,290 |
12,387 |
15,484 |
|
11 |
|
1,827 |
1,673 |
1,585 |
1,532 |
1,500 |
|
12 |
|
0,200 |
0,200 |
0,200 |
0,200 |
0,200 |
|
13 |
|
0,100 |
0,100 |
0,100 |
0,100 |
0,100 |
|
14 |
|
2,757 |
2,663 |
2,595 |
2,782 |
2,950 |
|
15 |
|
51,495 |
199,109 |
436,518 |
832,025 |
1378,504 |
|
16 |
|
132,343 |
1023,419 |
3365,557 |
8553,217 |
17713,781 |
|
| ||||||
Информация по теме:
Расчет производственной площади участка
Производственная площадь участка где: - площадь занимаемая оборудованием (36) м - коэффициент плотности оборудования (5,5) м Расчет действительной площади участка где: - длинна участка м Действительная площадь участка м Таблица 3. Технологическое оборудование и оснастка гальванического участка. Наи ...
Определение параметров гребного винта
Расчет элементов гребного винта для выбора двигателя В качестве движителя выбираем винт фиксированного шага. Тип установки – одновальная с прямой передачей от двигателя к движителю. Предельное значение диаметра гребного винта м. Расчетный режим для гребного винта выбираем соответствующим среднеэксп ...
Определение размеров устройств грузового двора
По заданию на грузовом дворе станции запроектированы: крытый склад для тарно-упаковочных грузов и мелких отправок, открытая контейнерная площадка и площадка для навалочных грузов. Длину крытого склада для тарно-упаковочных грузов и мелких отправок определяют по формуле: где: Fскл – площадь склад, м ...