Поршневые двигатели внутреннего сгорания являются тепловыми двигателями, у которых химическая энергия топлива преобразуется в механическую работу непосредственно в самом двигателе.
Преобразование химической энергии в тепловую и тепловой – в энергию движения поршня (механическую) происходит практически одновременно, непосредственно в цилиндре двигателя.
В результате сгорания рабочей смеси в цилиндрах двигателя образуются газообразные продукты с высоким давлением и температурой.
Под влиянием давления поршень совершает поступательное движение, которое с помощью шатуна и кривошипа преобразуется во вращение коленчатого вала.
Четырехтактными называют двигатели, у которых один рабочий цикл совершается за четыре хода (такта) поршня, соответствующих двум оборотам коленчатого вала. Схема работы четырехтактного двигателя без наддува представлена на рис.2.
Первый такт – впуск или всасывание горючей смеси – соответствует движению поршня вниз от В.М.Т. до Н.М.Т. За счет движения поршня создается разрежение (около 0,05 – 0,1 н/см2) и горючая смесь через открытый клапан «а» засасывается в цилиндр. Для достижения максимального наполнения цилиндра впускной клапан открывается несколько раньше положения поршня в В.М.Т. (точка 1) с определенным углом опережения и закрывается с некоторым углом запаздывания после Н.М.Т. (точка 2).
Второй такт – сжатие – соответствует движению поршня вверх от момента закрытия впускного клапана до момента прихода поршня в В.М.Т. Во время такта сжатия все клапаны находятся в закрытом положении.
Поршень сжимает находящуюся в цилиндре горючую смесь, в точке 3 подается искра в свече для воспламенения горючей смеси.
Третий такт – горение и расширение (рабочий ход) – соответствует движению поршня от В.М.Т. к Н.М.Т. под давлением сгорающего топлива и расширяющихся продуктов сгорания. (от точки 4 до точки 5).
Четвертый такт – выпуск отработавших газов – осуществляется при ходе поршня вверх от Н.М.Т. к В.М.Т. Этот ход поршня происходит при открытом выпускном клапане «б». Для улучшения процесса выпуска клапан открывается несколько раньше Н.М.Т. (точка 5) и закрывается с некоторым запаздыванием (точка 6).
В дизель, в отличие от карбюраторного двигателя, при движении поршня от В.М.Т. к Н.М.Т. засасывается через впускной клапан атмосферный воздух, на такте сжатия повышается давление и температура, при впрыске через форсунку топливо самовоспламеняется и сгорает, газы расширяясь давят на поршень, совершая рабочий ход, при движении поршня из Н.М.Т. к В.М.Т. через открытый выпускной клапан отработанные газы выталкиваются в атмосферу.
При дальнейшем движении поршня вниз начинается новый рабочий цикл, такты которого повторяются в перечисленной ранее последовательности.
Рабочий цикл четырехтактного двигателя изображается диаграммами в виде замкнутой (рис. 3) и развернутой (рис. 4).
Исходные данные для кинематического и динамического (силового) анализа кривошипно-шатунного механизма представлена в таблице 1.
Обозначения
К – карбюраторный двигатель
Д – дизель
В.М.Т. – верхняя мертвая точка
Н.М.Т. – нижняя мертвая точка
Пведом – ведомый вал
Пд – частота вращения двигателя (ведущего вала), об/мин;
Пп – частота вращения промежуточного вала КПП, об/мин;
Пкпп – частота вращения выходного вала КПП, об/мин;
Пв – частота вращения ведомого вала главной передачи, об/мин;
R – радиус кривошипа, мм;
l - постоянная кривошипно-шатунного механизма;
l = R / L = 0,25
где L – длина шатуна, мм;
Р1, Р2, Р3, Р4 – давление газов в цилиндре двигателя, МПа; (см. Индикаторная диаграмма Рис. 3)
Z1 …. Z6 – число зубьев шестерен и колес в коробке перемен передач и в главной передаче;
Рш – сила, направленная по оси шатуна, Н; (см. рис. 5)
Рг – сила давления газов на поршень, Н;
Рн – сила, направленная перпендикулярно оси цилиндра, Н;
Рр – радиальная сила, действующая по радиусу кривошипа, Н;
Pт – тангенциальная сила, действующая по касательной к окружности
Исходные данные (l=0,25)
Таблица 1
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 | |
Пд, об/мин |
4000 |
2500 |
1500 |
1000 |
1500 |
1200 |
1400 |
4400 |
3400 |
2200 |
Двигатель |
К |
К |
Д |
Д |
Д |
Д |
Д |
К |
К |
К |
R, мм |
60 |
75 |
40 |
70 |
65 |
55 |
50 |
80 |
45 |
85 |
Д, мм |
76 |
82 |
86 |
66 |
96 |
88 |
85 |
72 |
84 |
80 |
Р1, мПа |
1,0 |
1,5 |
2,0 |
2,5 |
3,0 |
2,5 |
2,0 |
1,5 |
1,0 |
1,0 |
Р2, мПа |
2,0 |
3,0 |
4,0 |
5,0 |
6,0 |
5,0 |
4,0 |
3,0 |
2,0 |
2,5 |
Р3, мПа |
3,0 |
4,5 |
6,0 |
7,5 |
9,0 |
7,5 |
6,0 |
4,5 |
3,0 |
3,5 |
Р4, мПа |
4,0 |
5,0 |
8,0 |
10,0 |
12,0 |
10,0 |
8,0 |
5,0 |
4,0 |
4,5 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 | |
Z1 |
24 |
20 |
30 |
22 |
25 |
12 |
15 |
25 |
20 |
24 |
Z2 |
120 |
120 |
120 |
110 |
75 |
36 |
45 |
50 |
60 |
48 |
Z3 |
20 |
25 |
20 |
24 |
22 |
20 |
24 |
20 |
25 |
22 |
Z4 |
100 |
100 |
80 |
120 |
110 |
60 |
48 |
100 |
100 |
88 |
Z5 |
25 |
20 |
24 |
12 |
15 |
24 |
30 |
20 |
20 |
24 |
Z6 |
50 |
60 |
48 |
36 |
45 |
48 |
120 |
60 |
80 |
120 |
Информация по теме:
Выбор методов и режимов хонингования отверстий
Хонингование снижает отклонение формы и повышает размерную точность, уменьшает параметр шероховатости, сохраняет микротвердость и структуру поверхности (поверхностного слоя), увеличивает несущую поверхность и остаточную сжимающие напряжения. Наибольшая эффективность достигается алмазным хонинговани ...
Расчёт и корректирование трудоёмкости капитального ремонта
Для проектировочного расчёта воспользуемся приведенной программой, которая включает не все заданные объекты, а только часть их, так называемые представители, к которым приводятся остальные объекты развёрнутой программы. Т.о. производится пересчёт всей номенклатуры ремонтируемых объектов на один или ...
Технико-экономические показатели организации реконструкции и
сметно-финансовые расчеты
Общая стоимость любого строительства складывается из сметной стоимости отдельных объектов, сооружений, зданий, работ и затрат, которые определяются расчетами-сметами по объемам работ и другим данным в соответствии с действующими сметными нормами, ценами, расценками и тарифами. Такой расчет стоимост ...