Двигатель внутреннего сгорания

Страница 1

Поршневые двигатели внутреннего сгорания являются тепловыми двигателями, у которых химическая энергия топлива преобразуется в механическую работу непосредственно в самом двигателе.

Преобразование химической энергии в тепловую и тепловой – в энергию движения поршня (механическую) происходит практически одновременно, непосредственно в цилиндре двигателя.

В результате сгорания рабочей смеси в цилиндрах двигателя образуются газообразные продукты с высоким давлением и температурой.

Под влиянием давления поршень совершает поступательное движение, которое с помощью шатуна и кривошипа преобразуется во вращение коленчатого вала.

Четырехтактными называют двигатели, у которых один рабочий цикл совершается за четыре хода (такта) поршня, соответствующих двум оборотам коленчатого вала. Схема работы четырехтактного двигателя без наддува представлена на рис.2.

Первый такт – впуск или всасывание горючей смеси – соответствует движению поршня вниз от В.М.Т. до Н.М.Т. За счет движения поршня создается разрежение (около 0,05 – 0,1 н/см2) и горючая смесь через открытый клапан «а» засасывается в цилиндр. Для достижения максимального наполнения цилиндра впускной клапан открывается несколько раньше положения поршня в В.М.Т. (точка 1) с определенным углом опережения и закрывается с некоторым углом запаздывания после Н.М.Т. (точка 2).

Второй такт – сжатие – соответствует движению поршня вверх от момента закрытия впускного клапана до момента прихода поршня в В.М.Т. Во время такта сжатия все клапаны находятся в закрытом положении.

Поршень сжимает находящуюся в цилиндре горючую смесь, в точке 3 подается искра в свече для воспламенения горючей смеси.

Третий такт – горение и расширение (рабочий ход) – соответствует движению поршня от В.М.Т. к Н.М.Т. под давлением сгорающего топлива и расширяющихся продуктов сгорания. (от точки 4 до точки 5).

Четвертый такт – выпуск отработавших газов – осуществляется при ходе поршня вверх от Н.М.Т. к В.М.Т. Этот ход поршня происходит при открытом выпускном клапане «б». Для улучшения процесса выпуска клапан открывается несколько раньше Н.М.Т. (точка 5) и закрывается с некоторым запаздыванием (точка 6).

В дизель, в отличие от карбюраторного двигателя, при движении поршня от В.М.Т. к Н.М.Т. засасывается через впускной клапан атмосферный воздух, на такте сжатия повышается давление и температура, при впрыске через форсунку топливо самовоспламеняется и сгорает, газы расширяясь давят на поршень, совершая рабочий ход, при движении поршня из Н.М.Т. к В.М.Т. через открытый выпускной клапан отработанные газы выталкиваются в атмосферу.

При дальнейшем движении поршня вниз начинается новый рабочий цикл, такты которого повторяются в перечисленной ранее последовательности.

Рабочий цикл четырехтактного двигателя изображается диаграммами в виде замкнутой (рис. 3) и развернутой (рис. 4).

Исходные данные для кинематического и динамического (силового) анализа кривошипно-шатунного механизма представлена в таблице 1.

Обозначения

К – карбюраторный двигатель

Д – дизель

В.М.Т. – верхняя мертвая точка

Н.М.Т. – нижняя мертвая точка

Пведом – ведомый вал

Пд – частота вращения двигателя (ведущего вала), об/мин;

Пп – частота вращения промежуточного вала КПП, об/мин;

Пкпп – частота вращения выходного вала КПП, об/мин;

Пв – частота вращения ведомого вала главной передачи, об/мин;

R – радиус кривошипа, мм;

l - постоянная кривошипно-шатунного механизма;

l = R / L = 0,25

где L – длина шатуна, мм;

Р1, Р2, Р3, Р4 – давление газов в цилиндре двигателя, МПа; (см. Индикаторная диаграмма Рис. 3)

Z1 …. Z6 – число зубьев шестерен и колес в коробке перемен передач и в главной передаче;

Рш – сила, направленная по оси шатуна, Н; (см. рис. 5)

Рг – сила давления газов на поршень, Н;

Рн – сила, направленная перпендикулярно оси цилиндра, Н;

Рр – радиальная сила, действующая по радиусу кривошипа, Н;

Pт – тангенциальная сила, действующая по касательной к окружности

Исходные данные (l=0,25)

Таблица 1

0

1

2

3

4

5

6

7

8

9

Пд, об/мин

4000

2500

1500

1000

1500

1200

1400

4400

3400

2200

Двигатель

К

К

Д

Д

Д

Д

Д

К

К

К

R, мм

60

75

40

70

65

55

50

80

45

85

Д, мм

76

82

86

66

96

88

85

72

84

80

Р1, мПа

1,0

1,5

2,0

2,5

3,0

2,5

2,0

1,5

1,0

1,0

Р2, мПа

2,0

3,0

4,0

5,0

6,0

5,0

4,0

3,0

2,0

2,5

Р3, мПа

3,0

4,5

6,0

7,5

9,0

7,5

6,0

4,5

3,0

3,5

Р4, мПа

4,0

5,0

8,0

10,0

12,0

10,0

8,0

5,0

4,0

4,5

0

1

2

3

4

5

6

7

8

9

Z1

24

20

30

22

25

12

15

25

20

24

Z2

120

120

120

110

75

36

45

50

60

48

Z3

20

25

20

24

22

20

24

20

25

22

Z4

100

100

80

120

110

60

48

100

100

88

Z5

25

20

24

12

15

24

30

20

20

24

Z6

50

60

48

36

45

48

120

60

80

120

Страницы: 1 2

Информация по теме:

Кинематическая схема бульдозера ДЗ-42Г
Рисунок 1.2 – Кинематическая схема бульдозера ДЗ-42Г: 1 – двигатель; 2 – фрикционная муфта; 3 – карданный вал; 4 – редуктор; 5 – блокировка механизма поворота; 6 – венечные шестерни; 7 – блокировка остановки; 8 – солнечная шестерня; 9 – водило; 10 – ведущие колеса; 11 – бортовой редуктор; 12 – масл ...

Исследование причины появления не допускаемой течи масла амг-10 по штоку рулевого привода РП-230
Объектом исследования является рулевой привод РП-230, отстраненный от эксплуатации по причине обнаружения не допускаемой течи масла АМГ-10 по штоку. Предварительное ознакомление с РП-230 При периодическом техническом обслуживании системы управления самолетом, была обнаружена капельная течь масла АМ ...

Технико-эксплуатационные показатели бульдозера ДЗ-42Г
Основными технико-эксплуатационными показателями бульдозера являются часовая производительность машины и тяговые расчеты которые мы и произведем в рамках данного курсового проекта. Для разработки несвязной горной породы типа легкого суглинка, перемещения ее на расстояние l2=60 м и послойной укладки ...


Навигация

Copyright © 2019 - All Rights Reserved - www.transporank.ru