Составление и расчет структурной схемы передатчика

Материалы » Проектирование автомобильного передатчика » Составление и расчет структурной схемы передатчика

Страница 3

Наиболее широко применяют два способа получения ФМ. Один из них состоит в расстройке контура усилительного каскада и примечателен своей универсальностью: в модуляторе одновременно с ФМ происходит усиление мощности. Второй способ – использование фазовращающих цепей.

Следующим каскадом в нашем передатчике является фазовый модулятор, в котором ФМ осуществляется в контурах усилительного каскада путём управления его расстройкой с помощью модулирующего сигнала. В качестве управляемого реактивного элемента здесь используется варикап. Для увеличения индекса модуляции варикапы подключены ко всем контурам усилителя. Изменение резонансной частоты контура усилителя изменяет фазу высокочастотных колебаний в контуре в соответствии с его фазовой характеристикой. Схема имеет вид:

После фазового модулятора ставим умножители частоты. В основе работы маломощных транзисторных умножителей частоты обычно лежит принцип выделения гармоники нужной частоты из импульсов коллекторного тока. На высоких частотах на режим и параметры влияет реакция нагрузки, и её необходимо учитывать.

При достаточно высокой добротности контуров умножителя его входное и выходное напряжения имеет форму, близкую к гармонической. Но в общем случае ток и напряжение на входе транзистора в режиме с отсечкой имеют негармоническую форму, и это усложняет расчёт.

Трудность создания резонансных умножителей частоты заключается в низких значениях коэффициентов Берга при большой кратности умножения. Поэтому следует выбирать углы отсечки максимизирующие соответствующие коэффициенты Берга. Также известно, что коэффициент усиления уменьшается при увеличении кратности умножения. Схемы умножителей бывают с параллельным питанием или с последовательным. Схема умножителя:

Мы взяли схему с последовательным питанием. Для уменьшения влияния нагрузки на параметры контура и согласования контура с VT мы нагрузку подключаем частично. Можно добавить фильтр " пробка" в коллекторную цепь, для уменьшения влияния первой гармоники на параметры контура. После умножителя ставим выходной каскад – ГВВ с резонансной схемой согласования в коллекторной цепи. Генератор с внешним возбуждением относится к классу усилителей высокой частоты. В отличие от малосигнальных усилителей ВЧ ГВВ имеет дело с большими уровнями сигналов, действующими на его входе и выходе, и работает как в линейном, так нелинейном режимах. В этой связи ГВВ принято характеризовать рядом энергетических показателей. К ним относятся выходная колебательная мощность, мощность, потребляемая от источника питания, мощность рассеяния по выходному электроду, коэффициент полезного действия по выходному электроду, коэффициент усиления по мощности и ряд других. Качество генератора во многом зависит от уровня достигнутого КПД и Кр при заданном уровне выходной мощности. Поэтому ГВВ можно рассматривать как устройство, осуществляющее преобразование энергии источника питания в ВЧ энергию с достаточно высоким КПД и управляемое внешним ВЧ сигналом. В ГВВ с избирательными цепями согласования можно реализовать три возможных режима работы: недонапряжённый, критический, перенапряжённый. Если напряжение источников питания, смещения и амплитуды возбуждения неизменно, то требуемый режим работы ГВВ достигается подбором нагрузки, по выходному электроду. При энергетическом расчёте ГВВ в критическом режиме на заданную мощность одним из параметров, которым приходится задаваться, является угол отсечки. Его значение можно выбирать из интервала от 0 до 180 градусов. Однако при разных значениях углов отсечки получаются различными такие важные характеристики ГВВ как электронный КПД, Кр, насыщенность выходного тока высшими гармониками и ряд других. Известно, что усилительные свойства АЭ наиболее высоки в классе А. При выборе угла отсечки из интервала 120 – 180 усилительные свойства АЭ уменьшаются, но незначительно. Однако электронный КПД ГВВ получается при этом невысоким и лишь немного превышает 50%. При выборе угла отсечки < 120 начинает расти требуемая амплитуда напряжения возбуждения и заметно снижается коэффициент усиления по мощности. Одновременно увеличивается вес высших гармоник в импульсной последовательности выходного тока. Максимум амплитуды второй гармоники наблюдается при угле отсечки 60 градусов, а третьей – при 40 градусов. Изменение веса третьей гармоники имеет колебательный характер, и при угле отсечки 90 градусов её вес равен нулю. Одновременно с уменьшением угла отсечки наблюдается рост электронного КПД. Максимум его получается при угле отсечки (50 - 60) градусов, а затем идёт резкое снижение. При угле отсечки < 90 градусов начинает быстро убывать Кр и увеличивается требуемая мощность возбуждения.

Страницы: 1 2 3 4

Информация по теме:

Расчет гидравлической передачи
Имея гидравлическую схему можно приступить к расчету гидравлической передачи. На основании этого расчета выбираются гидронасосы, гидромоторы и другая гидроаппаратура. Подбор гидронасосов и гидромоторов гидропривода Гидростатическая передача состоит из гидронасоса и двух гидроматоров фирмы SAUER-DAN ...

Потребность в автобусах для выполнения дополнительного объема перевозок
Для установления потребности в подвижном составе предварительно нужно рассчитать годовую выработку одного списочного автобуса. Расчёт годовой выработки одного списочного автобуса. ,пасс. (1) Где: q – вместимость автобуса по местам для сидения для маршрутных такси – 22 посадочных места. (информация ...

Определение размеров устройств грузового двора
По заданию на грузовом дворе станции запроектированы: крытый склад для тарно-упаковочных грузов и мелких отправок, открытая контейнерная площадка и площадка для навалочных грузов. Длину крытого склада для тарно-упаковочных грузов и мелких отправок определяют по формуле: где: Fскл – площадь склад, м ...


Навигация

Copyright © 2024 - All Rights Reserved - www.transporank.ru