Составление и расчет структурной схемы передатчика

Материалы » Проектирование автомобильного передатчика » Составление и расчет структурной схемы передатчика

Страница 3

Наиболее широко применяют два способа получения ФМ. Один из них состоит в расстройке контура усилительного каскада и примечателен своей универсальностью: в модуляторе одновременно с ФМ происходит усиление мощности. Второй способ – использование фазовращающих цепей.

Следующим каскадом в нашем передатчике является фазовый модулятор, в котором ФМ осуществляется в контурах усилительного каскада путём управления его расстройкой с помощью модулирующего сигнала. В качестве управляемого реактивного элемента здесь используется варикап. Для увеличения индекса модуляции варикапы подключены ко всем контурам усилителя. Изменение резонансной частоты контура усилителя изменяет фазу высокочастотных колебаний в контуре в соответствии с его фазовой характеристикой. Схема имеет вид:

После фазового модулятора ставим умножители частоты. В основе работы маломощных транзисторных умножителей частоты обычно лежит принцип выделения гармоники нужной частоты из импульсов коллекторного тока. На высоких частотах на режим и параметры влияет реакция нагрузки, и её необходимо учитывать.

При достаточно высокой добротности контуров умножителя его входное и выходное напряжения имеет форму, близкую к гармонической. Но в общем случае ток и напряжение на входе транзистора в режиме с отсечкой имеют негармоническую форму, и это усложняет расчёт.

Трудность создания резонансных умножителей частоты заключается в низких значениях коэффициентов Берга при большой кратности умножения. Поэтому следует выбирать углы отсечки максимизирующие соответствующие коэффициенты Берга. Также известно, что коэффициент усиления уменьшается при увеличении кратности умножения. Схемы умножителей бывают с параллельным питанием или с последовательным. Схема умножителя:

Мы взяли схему с последовательным питанием. Для уменьшения влияния нагрузки на параметры контура и согласования контура с VT мы нагрузку подключаем частично. Можно добавить фильтр " пробка" в коллекторную цепь, для уменьшения влияния первой гармоники на параметры контура. После умножителя ставим выходной каскад – ГВВ с резонансной схемой согласования в коллекторной цепи. Генератор с внешним возбуждением относится к классу усилителей высокой частоты. В отличие от малосигнальных усилителей ВЧ ГВВ имеет дело с большими уровнями сигналов, действующими на его входе и выходе, и работает как в линейном, так нелинейном режимах. В этой связи ГВВ принято характеризовать рядом энергетических показателей. К ним относятся выходная колебательная мощность, мощность, потребляемая от источника питания, мощность рассеяния по выходному электроду, коэффициент полезного действия по выходному электроду, коэффициент усиления по мощности и ряд других. Качество генератора во многом зависит от уровня достигнутого КПД и Кр при заданном уровне выходной мощности. Поэтому ГВВ можно рассматривать как устройство, осуществляющее преобразование энергии источника питания в ВЧ энергию с достаточно высоким КПД и управляемое внешним ВЧ сигналом. В ГВВ с избирательными цепями согласования можно реализовать три возможных режима работы: недонапряжённый, критический, перенапряжённый. Если напряжение источников питания, смещения и амплитуды возбуждения неизменно, то требуемый режим работы ГВВ достигается подбором нагрузки, по выходному электроду. При энергетическом расчёте ГВВ в критическом режиме на заданную мощность одним из параметров, которым приходится задаваться, является угол отсечки. Его значение можно выбирать из интервала от 0 до 180 градусов. Однако при разных значениях углов отсечки получаются различными такие важные характеристики ГВВ как электронный КПД, Кр, насыщенность выходного тока высшими гармониками и ряд других. Известно, что усилительные свойства АЭ наиболее высоки в классе А. При выборе угла отсечки из интервала 120 – 180 усилительные свойства АЭ уменьшаются, но незначительно. Однако электронный КПД ГВВ получается при этом невысоким и лишь немного превышает 50%. При выборе угла отсечки < 120 начинает расти требуемая амплитуда напряжения возбуждения и заметно снижается коэффициент усиления по мощности. Одновременно увеличивается вес высших гармоник в импульсной последовательности выходного тока. Максимум амплитуды второй гармоники наблюдается при угле отсечки 60 градусов, а третьей – при 40 градусов. Изменение веса третьей гармоники имеет колебательный характер, и при угле отсечки 90 градусов её вес равен нулю. Одновременно с уменьшением угла отсечки наблюдается рост электронного КПД. Максимум его получается при угле отсечки (50 - 60) градусов, а затем идёт резкое снижение. При угле отсечки < 90 градусов начинает быстро убывать Кр и увеличивается требуемая мощность возбуждения.

Страницы: 1 2 3 4

Информация по теме:

Основные неисправности и причины их появления
Велико влияние исправного состояния автосцепных устройств на безопасность движения подвижного состава. Не выявленные своевременно износы приводят к саморасцепу автосцепок или падению поврежденных деталей на путь, вызывая угрозу схода подвижного состава с рельсов. Основными причинами неисправностей ...

Выбор системы автоблокировки
Согласно заданию на курсовой проект на перегоне отсутствуют изолирующие стыки, поэтому выбираем автоблокировку с тональными рельсовыми цепями без изолирующих стыков и централизованным размещением аппаратуры (АБТЦ). Основу системы АБТЦ составляют тональные рельсовые цепи (ТРЦ). Для работы ТРЦ исполь ...

Соотношения между угловыми скоростями, мощностями и крутящими моментами на валах зубчатой передачи
Передаточное отношение от колеса 1 к колесу n U1n=ω1/ωn где ω1 – угловая скорость вала 1, ωn – угловая скорость вала n. КПД зубчатой передачи: η=Рn/Р1 где Р1 – мощность на валу 1 (входном), Рn – мощность на валу n (выходном). Крутящие моменты: Т1= Р1/ω1 – вал 1, Тn= Рn ...


Навигация

Copyright © 2026 - All Rights Reserved - www.transporank.ru